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Abstract

When designing vehicle vibration monitoring systems for aerospace devices, it is common to use well-established

models of vibration features to determine whether failures or defects exist. Most of the algorithms used for failure

detection rely on these models to detect significant changes in a flight environment. In actual practice, however,

most vehicle vibration monitori _g systems are corrupted by high rates of false alarms and missed detections. This

crucial roadblock makes their implementation in real vehicles (e.g., helicopter transmissions and aircraft engines)

difficult, making their operation costly and unreliable. Research conducted at the NASA Ames Research Center has

determined that a major reason :or the high rates of false alarms and missed detections is the numerous sources of

statistical variations that are not taken into account in the modeling assumptions.

In this paper, we address one such source of variations, namely, those caused during the design and manufacturing

of rotating machinery componenE:s that make up aerospace systems. We present a novel way of modeling the vibration

response by including design variations via probabilistic methods. Using such models, we develop a methodology

to account for design and manufacturing variations, and explore the changes in the vibration response to determine

its stochastic nature. We explor_ the potential of the methodology using a nonlinear cam-follower model, where the

spring stiffness values are assun ed to follow a normal distribution. The results demonstrate initial feasibility of the

method, showing great promise n developing a general methodology for designing more accurate aerospace vehicle

monitoring systems.

*S ubmitted for Review, ASME Journal of Mechanical Design. Conference version published in DETC 2002 (DETC2002-DFM34161).
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1 Designing Vehicle Monitoring Systems

This work addresses a need to de_Agn effective vehicle health monitoring systems for aerospace vehicles. Ongoing

research focuses on various sourc_ s of variation that result in unexpected performance variations. The current focus

is in assuring that correct models of system input signals are used for the algorithms and metrics used for failure

detection. This paper explores on_ aspect of modeling input signals in such systems, namely, the consideration of

design and manufacturing variatioas for the system response variable that is being monitored, namely, the vibration

signature.

In the following subsections, 're first present some backgound research on vehicle health monitoring systems,

two examples of the types of variations encountered in such systems, and discuss the need to incorporate probabilistic

models to account for such variatio_ls. Then, the use of probabilistic methods (e.g., Monte Carlo simulation) is explored

with a simple example in design, and compared to more traditional variation analysis techniques. Next, a lumped

parameter dynamic model is preset ted for a complex cam-follower system used in this paper, followed by an analysis

of vibration data obtained from su_ h a model. Finally, the Monte Carlo simulation technique is used to vary a subset

of the design parameters. The effect on the vibration response is explored to determine whether probabilistic methods

can be used to model the inherent _ariations observed in the dynamic response of complex systems.

1.1 Background and Objective

Failures in rotating machinery for high-risk aerospace applications are unacceptable when they result in catastrophic

accidents, and undesirable when tht.y result in high maintenance costs. In an attempt to detect any anomalous behavior

during flight for increased safety, aaost aircraft manufacturers and operators are moving towards installing vehicle

health monitoring systems. Despite the motivation to make these systems standard onboard aircraft, false alarms and

missed detections still remain a serious concern, making their reliability questionable and their operation costly in

practice. One of the main reasons for the high rate of false alarms and missed failures is the lack of a statistically

sufficient sample of baseline and fa lure signatures from which generalizations can be made. Specifically, since failure

events are rare in such highly-mair_tained systems, there is no knowledge of the distribution of responses they could

generate.

Recent work at NASA Ames Re,search Center has demonstrated that the statistical variations in baseline (healthy)

data must be accounted for to assure accurate anomaly detection in aircraft monitoring systems (Huffet al., 2000; Huff

et al., 2002; Turner and Huff, 2002: Turner and Huff, 2001). In this work, we address the mismatch between modeled

responses and empirical observatiol_s by developing statistically-accurate models that take variations into account. The

specific objective is to explore prob_bilistic approaches to generate a reliable distribution of vibration responses using

lumped-parameter dynamic models. If such an approach proves feasible, more accurate models of healthy and faulty

aircraft vibration data will be developed and used as signal models for vibration monitoring systems.
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1.2 Observed Variations in Vibration Signatures

For rotating machinery, vibration _ignals are thought to contain indicators of defects and usage damage in rotating

components such as gears, bearings, shafts, rotors, etc. Each of the rotating components emanate specific frequencies

that appear in the vibration signal_; any changes in the amplitude and frequency content of these signatures, or the

occurrence of sidebands or additional frequencies, is indicative of potential variations and defects. The types of

variations of interest in this work include those that are inherent from the design and manufacturing processes (e.g.,

tolerances, assembly variations, s'trface roughness and waviness errors), material defects, cracks, and other point

defects on the rotating component'_ (Turner and Huff, 2001; Huff et al., 2002; Turner and Huff, 2002). In this paper,

we focus on variations introduced luting design and manufacturing, effectively introducing a stochastic nature to the

modeling parameters such as stiffness, mass, and damping.

Examples of design, manufactu :ing, and assembly variations having significant impact on system vibrations signals

have been found throughout our re_:earch. As a first example, Figure 1 shows a schematic of a helicopter transmission

for an OH58 helicopter (Lewicki and Coy, 1987), as well as a plot of experimental data we have collected using a test

rig which houses such a transmission box (Huff et al., 2000). The different lines correspond to four different assembly

instances of the same transmissiol box. Vibration data were collected for each assembly instance. Within each

instance, three variables were varie t (namely torque, mast lift and mast bending forces) using a factorial experimental

design. As shown, the overall vibration levels (total power) varied significantly depending on the test conditions

defined by the four experimental wriables (Huff et al., 2000).

As a second example, Figure 2 shows a theoretical plot of the frequency spectrum from one of the gear systems

contained in the helicopter transmission, based on our empirical observations (Huff et al., 2002). The geometry of

the gear system (epicyclic gears) irLcludes four smaller gears (planet gears) revolving around a larger gear (sun gear)

(Smith, 1999). In this example, Me theoretical epicyclic gear mesh frequency for a single planet would fall on 99

in the x-axis (equal to the number of teeth), as shown in black in Figure 2, followed by a set of harmonics. For a

more realistic system, the exact epi:yclic gear mesh frequency appears at frequencies clustered around the theoretical

frequency value due to the spacing variations between planet gears. Figure 2 shows the frequency clustering for two

sets of equally-spaced planet gears I shown in red), as opposed to four equally-spaced planet gears (shown in blue). The

spacing between the planet gears is subject to design variations, which result in the observed difference in frequency

distributions, which in turn can inwdidate the signal modeling assumptions (Huff et al., 2002).

1.3 Probabilistic Variation Analysis in Design

A significant degree of variation is introduced during the design, manufacturing, and assembly of components that

make up aircraft systems. Standarl tolerance variation analysis methods used in design address this variability by

predicting the total variation in the final system (Creveling, 1997). Because we are starting from similar variation
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Figure 1: "Variations in Vibration Levels in a Rotorcraft Transmission.

sources, this approach will be extqored and extended here to dynamic models of complex systems to predict the

variation in vibration response chalacteristics.

A simple mechanical assembly is shown in Figure 3, where three rectangular blocks of dimension X1, X2, and X3

are designed and manufactured to "it within the allowable space of dimension Y. Due to the inherently probabilistic

nature of the manufacturing proces _, each of the dimensions is assigned specific tolerances based on a distribution set

by the designer (either based on err pirical manufacturing data or process capability specifications (Creveling, 1997).)

Typically, statistical tolerance anal',sis techniques are applied to geometric models of such assemblies to predict the

magnitude and range of the variations in critical assembly features. For example, a Monte Carlo simulation approach

is shown in Figure 3 to perform tclerance analysis for each manufacturing and design parameter (Hammersley and

Handscomb, 1964; Creveling, 1997). Values of each parameter Xi are drawn randomly from an assumed distribution

function, and then combined throu_,h a functional model to determine the corresponding values for the final variable

of interest. The statistical moments are then computed for the resultant values, which in turn are used to determine the

probability distribution that matche_ the final assembly variable Y.

2 Monte Carlo Methods: Summary and Example

In this paper, we explore the application of Monte Carlo methods to variation modeling for the purpose of determining

performance limits of complex dyn tmic systems. This section presents the fundamentals of such an approach using a

simple design example.
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Figur_ 3: Application of Statistical Methods to Tolerancing.

Conceptually, Monte Carlo simalation is simple and elegant (Metropolis and Ulam, 1949; Hammersley and Hand-

scomb, 1964). Consider some func ion

y = f(xl ,xz, ...,Xn), (1)

where y is a known function of rancom variables xt ,xz,...,x,. We assume that each xi has a known random nature and

all the xi's are statistically independent. The question we wish to answer (or simulate) is: what is the random nature

of y?

To determine the random nature of y, a random sample is generated for each xi. Using the known function f (some

system/performance model), y is g_nerated next. Depending on the information needed from the random nature of y

(perhaps a mean # and standard de_ iation _, or the number of times y exceeds some value out of 1000 trials, etc.) the

value ofy or some sort of frequenc2 rcount is recorded.

As an example, consider the design of a helical coil spring to achieve some specific spring constant k. The relation
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between the performance paramet,'_r k and the design variables is

daG
k - (2)

8D3N '

with d the wire diameter out of wlich the spring is made, G the shear modulus of the spring material, D the diameter

of the.spring (helix diameter), and ._/the total number active turns or coils of the spring. As a first pass, a deterministic

model with d = 1.5 mm, G = 79 GPa, D = 18.0 ram, and N = 13 turns gives k = 660N/m. In reality, the values of d,

G, D, and N do not always take on the same precise values for each spring that is manufactured. Thus, a more accurate

(with regard to how well it represe its reality) design model would be one which considers the way the variations of d,

G, D, and N cause a variation in k.

For cases where the function : is simply represented and smooth enough to provide second derivatives, a low-

order Taylor series approximation for the mean of y can be expressed as below, with the partial derivatives evaluated

at xi = #i (Hahn and Shapiro, 1994; McAdams and Wood, 2000):

1 n 02f, ,

i_1--5_2 v ar_ xi ) . (3)#y = f(#xl ,#x2, ...,#x,) + _ "= °xi

Similarly, a low-order approximati m for the variance of y can be expressed as:

Var(y) = L {Of'] 2Var(xi). (4)
i=1 \OXi]

Equations (3) and (4) can be applied to Eq. (2) to yield:

4 1 12 2

I.tk = _ + g_Var(d) (5)
112 4

+ _Var(D)+l_Var(N),

and,

Va,(k) : (4-_2]2Var(d) + (_)2Var(G)' 8_o_t_" (6)
_ 4 2

+ (_)2Var(O) + (_) Var(N).
\ 81_O41).N

Substituting d = 1.5 mm, G = 79 GPa, and D = 18.0 mm for the average values ga,/aG, #D, gU and taking Var(d) =

2.5 × 10-5 mm, Var(G) = 6.9 GPa, Var(D) = 18.6 × 10-3 mm, and Var(N) = 1.87 × 10 -3 turns (Shigley and Mischke,

2001) for the variations gives #k = 660 N/m and Var(k) = 27,600 N/m. Translating this into a mechanical tolerance

using a common convention assure nga random variable (i.e., tolerances = 3Crx = 3 X/_(Var(x))) gives 498 N/m.

Using Eqs. (3) and (4) allows c!esigners a starting point to understand, and compensate or design for, the effects

of variation. Nevertheless, this apl:,roximate approach has a number of key shortcomings that become apparent and

critical as we explore more compl,:x systems and the compound effects of different types of variation. Of critical

importance here are that: a) as engineering models become complex and computational, Eqs. (3) and (4) fail to

provide tractable analysis, and b) tl-ese two equations give us limited, and at times misleading, information about the

probability distribution function of y. As an example, consider the relation y = sin(x). Using Eqs. (3) and (4), and
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taking x to be a random variable fr:_m a standard normal distribution gives By = 0 and _y = 1. Such a result may lead a

designer to the notion that y can be modeled as a variable from a standard normal distribution. If this notion were used

to make parameter specifications c,r expectations of failure, important errors could occur. Shown in Fig. 4 is a plot of

the probability density function of y. The probability density function for y is determined by applying a coordinate

transformation theorem from staffs tics (Eisen, 1969). A key restriction of this theorem is that the mapping of y = f(x)

be one to one, which is violated in our simple spring example.
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Figure 4: The pdf ofy (y = sin(x), x is a normal variable.)

Returning to the spring exampl _, we now use Monte Carlo simulation to explore the variation in k as a function of

the variations in d, G, D, and N. Tl_e histogram in Fig. 5 is generated performing a Monte Carlo simulation as outlined

earlier in this section. Based on this simulation, there were no springs (out of a sample run of 100,000 springs) that

fell below k = 660 - 498 N/m ant above k = 660 + 498 N/m (taking the tolerance 498 N/m). This is compared to

270 (.27% from three-sigma tolerzncing) if k were treated as a normally distributed random variable. The standard

deviation of the Monte Carlo simutated springs is 17.5 N/m leading to a 3o tolerance of 52.5 N/m. The significant

difference between the Monte Carl) simulated variation and that approximated by Eq. 4 is due to the non-linearity of

Eq. 2. Also, this comparison highli_ghts the potential for engineering errors (in this case likely of a conservative nature)

that would be made based on simple, linearized, analytic models such as those given by Eqs. 3 and 4.

This short review and comparison of approaches to represent variation in design and manufacturing highlights

some of the potential advantages o-' Monte Carlo simulation. In summary, with the minimal penalty of some compu-

tation time, Monte Carlo simulatioJ_ provides more useful information for the designer. Based on this insight, we use

Monte Carlo simulation to explore how different sources of variation combine in more complex systems to influence

the overall response and performance of a dynamic system.
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Figure 5: Histogram of k generated using Monte Carlo simulation.

3 Application: Cam-Follower Response

A lumped-parameter, seven degree-of-freedom (fourteenth-order) model of a cam follower is used in this paper as

an example of a complex nonlinear system. The cam-follower system is shown in Figure 6(a), and a schematic of

the model is shown in Figure 6(b), adapted from (Grewal and Newcombe, 1988) and (McAdams and Wood, 1996).

The parameter values for the cam-Iollower system were taken from (Grewal and Newcombe, 1988), and are listed in

Table 1. The equations of motion for the model are:

and,

t.O = -GAO. - oi) - x4(e.- oi)

-CbOc - Tc, (7)

McYt = -C.,pl - K, syl - Fccos

+Fp, (8)

MrY2 : -Cf(y2 - 93) - Kf(y2 - Y3)

+ Fc cos qb - Fp, (9)

Mfy3 : Cf(y2 -93) nl-gf(Y2 -Y3)

-C4(.Y3 -- 94) -- K4(y3 - Y4)

-Fw- Fcb, (10)

M3Y4 = 64(3)3 --94) +K4(Y3 -Y4)

-C3 (.)?4- 95) - K3(Y4 -Y5), (11)

M2j':5 : C3 (204- 95 ) -[- K3 (Y4 - YS)

-C2(95 - 96) - g2(Y5 - Y6), (12)
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(a) Schematic.
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(b) The dynamic model.

Figure 6: Example: Cam-follower System.

MtY6 = C2(.))5 -3)6) +K2(Y5 -Y6)

--CIY6 -- KIY6, (13)

where 0i is the input position, gsf and Csf model the damping and stiffness of the cam drive shaft, Cb accounts for

friction losses in the drive shaft bezring, Mc is the mass of the cam itself, and Ic is the cam moment of inertia about its

center of rotation. To account for tqe flexure of the shaft, a shaft stiffness, Kvs, and a damping, Cvs have been added.

The offset of the cam follower frcm the center of the rotation of the cam is e, Kh accounts for deformation at the

roller-cam interface, and Mr is the mass of the roller. The inertia of the roller is assumed to have a negligible effect

on the rotational dynamics of the s'J'stem. The mass of the follower is My, with Kf and Cf the structural stiffness and

damping of the follower, respectively. Ccb accounts for the friction at the interface of the follower and the follower

guide, Fcb is the force that results lor this friction, and, Fw is the external load on the follower. The spring has been

modeled as three elements to approximate the distributed mass of the spring. KI, K2, and K3 are the distributed spring

constants. The structural damping of the spring is approximated as Ct, C2 and (73. Ml, M2, and M3 are the mass of the

spring. The state-space equations were integrated using a Runge-Kutta integration routine. A simple harmonic motion

(SHM) cam profile with a maximum rise of .0254m is used. The cam is assumed to rotate at a fixed rate of 1500 RPM

(25 Hz). The numerical values for the constants used in the simulation of cam operation are presented in Table 1.

In Figure 7, the velocity and acceleration responses of the cam follower (from variable Y3 in Figure 6(b)) are

shown. The dashed line shows the idealized follower velocities and accelerations as determined by differentiating the

cam profile. The solid line shows the reality when system mass, stiffness, and the resulting dynamics are taken into

consideration.

In contrast, Figure 8 shows the _elocity and acceleration responses of the cam follower with a profile error of 25/trn
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Table 1: Constant Values for the Cam-Follower Dynamic Model.

Element

cam moment of inertia

cam shaft rotational damping

cam shaft rotational stiffness

drive shaft friction

cam mass

cam shaft horizontal damping

cam shaft horizontal stiffness

system preload

follower stiffness

follower mass

follower damping ratio

follower damping

external follower load

return spring stiffness

return spring mass

return spring damping ratio

return spring damping

cam eccentricity

Variable [

t¢

C:

K,:

G

Mc

F_

K:

M:

n/

c:

F_

KL,L3

Mt 2,3

"flrs

C_,2,3

e

Value

.O0091034kg/m 2

.01356N. m. s/rad

22600N • re�rod

.ll3N.m.s/rad

.5017Kg

752.9N. s/m

2.6e9N/m

266.62N

175.1erN/m

.340kg

.75

n:2,,/M:K:
lOON

6 3000 N / m

.0227kg

,075

.01905m

]
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Figure 7: Follower velocity and ac_:eleration per cam rotation with ideal cam surface smoothness and profile tolerance.
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11

and a surface roughness of 2.0/z,n added to the cam profile. The profile error is modeled using a deterministic offset,

simulated on the cam surface by ti'e addition of a sinusoid of tp/3sin(nO). In this case, tp is the profile tolerance and

n was taken to be small compared to the forcing frequency (1500 RPM) and large with respect to the step size of the

simulation code. The surface roug mess is modeled using a random number generator and transformation techniques

to simulate the surface roughness.

The addition of these geometri z variations cause minimal change in follower velocity as a function of cam angle.

However, the simulations show thw: a geometric variation in the cam causes a significantly different acceleration, with

a large magnitude, in the follower The effective higher frequency and magnitude follower will cause significantly

different vibrations on the system. Of particular relevance to our effort to simulate failure modes is that an increase in

follower acceleration is related to i.n increase in the wear rate of the cam and follower (Rothbart, 1956). Also of key

importance is that acceleration is generally the signal that is monitored for structural health status. Thus, the behavior

of the acceleration signal is critical for accurate fault prediction and detection.

4 Probabilistic Cam-follower Vibration Model

Exploring the vibrational impact cf variations in parameters such as spring stiffness provides a different simulation

challenge. Parameter values of con ponents vary from cam system to cam system, due to manufacturing and assembly

variations. Because parts are replaced regularly during the lifecycle of systems, these variations are important to

understand. For example, the sprin :_,constant on several cam systems can be distributed similarly to the distribution in

Figure 5. In the end, vibration mol itoring systems have to operate with generalized models of system response, with

these types of variation included in such models.

The core research question is t_vo-fold: 1) how much product variation results from a random fluctuation in the

manufactured parts?; and, 2) how d )es response variation (e.g., vibration response distribution) relate to the parameters
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Figure 9: Comparison of Power Spectral Densities for an Ideal Cam Profile vs. a Cam with profile tolerance and

surface roughness added (high-frequency range zoomed-in).

of a specific system being monito'ed? The answer to these questions will allow for a more informative design of

vehicle health monitoring systems. For example, the behavior of some set of cam systems would be used to determine

performance metrics, and windows on the metrics for acceptable performance. In this section, we explore the effect

of a variation in spring stiffness (in lerent from the manufacturing process) on a sampling of cam systems.

4.1 Analysis of Cam-Follower Vibration Signatures

Prior to analyzing the effect of design variations on the vibrational response, the vibration signature needs to he

understood to decide on a possible :;et of features (vibration metrics) that will be used to monitor system performance

and indicate the occurrence of failu es. A small sample of the simulated cam-follower vibration responses is shown in

Figures 7 and 8 for half a revolutioa (for an ideal cam and a cam with profile errors, respectively). 12 revolutions of

these signals are used to analyze th,: frequency content, with a sampling frequency of 10,000 Hz (the Nyquist cut-off

frequency is 5,000 Hz.)

The frequency content of these signals is shown in Figure 9. The first plot shows the entire set of frequencies

computed from the two signals. B_.sed on a careful analysis, the only difference in the frequency content due to the

addition of profile and surface errors manifests itself in the higher frequency range. The second plot shows a zoomed-

in portion of the higher-frequency I ange where the difference due to the two signals can be seen clearly. In general,

the addition of the profile and surfa_ e err.ors introduces frequencies in the noise range, as well as increasing the overall

power levels.
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Many possibilities exist for seK.cting a feature set for the purposes of monitoring changes in the vibration signatures

(Smith, 1999; Lewicki and Coy, 1!_87; Turner and Huff, 2001). In this paper, we first focus on the most most standard

vibration monitoring feature, namely, the global measure of vibration levels. This measure can be computed as the

area under the power spectral den_, ity plot in the frequency domain (equivalent to the variance in the time domain by

Parseval's theorem.) Because most of the changes due to the addition of surface errors to the cam profile are observed

in the higher-frequency range shown in Figure 9 (_ 177 Hz to 250 Hz), we select the total power in this range as the

vibration metric of interest for this study.

4.2 Analysis of the Impact of Design Variations

The signals defined and analyzed n the previous subsection were varied using the Monte Carlo simulation method.

In this case, both the signal from ::he ideal cam and from the cam with profile and surface errors are used to deter-

mine whether a random variation in the spring constants Kl, K2, and/£3 (see model in Figure 6(b)), similar to the

helical spring explored earlier, will result in variations in the vibration metric of interest (e.g., total power in the

high-frequency range).

The spring constant tolerance :nodel is developed by analogy with the earlier example in the paper. The spring

constant mean is taken as 21,000 N/m with a standard deviation of 2.65% (660/17.5 = 0.0265) or 567 N/re. Recall

that the spring that we explored b, ffore had a mean of 660 N/m and a standard deviation of 17.5 N/re. The spring

was chosen as the element to vary because we can develop a reasonable tolerance model for this element (unlike the

damping), and it is likely to have a larger effect on the vibrational response than one of the other parameters.

N = 200 number of trials are _;enerated using the Monte Carlo simulation method (minimum number of trials

required (Creveling, 1997)). A plot of the selected vibration metric is shown in Figure 10 for the case of the ideal cam

profile and the cam profile with er-ors. As observed, the overall vibration levels and the variance in these levels are

higher for the case of cam profile _ ith errors.

The statistics (mean, standard ceviation, skewness, kurtosis) of the vibration data generated using MC simulation

are summarized in Table 2 for all ol the frequency ranges for comparison. Using the high-frequency range once again,

the ideal profile case results in a mean value of 62,967.00 and a standard deviation of 83.98, resulting in a tolerance

of 251.95. The error profile case remits in a mean value of 69,250.00 and a standard deviation of 3,468.50, resulting

in a tolerance of 10,404.00 for the overall vibration metric.

Recall from the earlier review of Monte Carlo techniques that the standard approach to computing tolerances

(using Equations 3 and 4) based or the complex mathematical relationship between the design parameters (d, G, D,

and N) and the vibration response (sum of the total power in Y3) would have been intractable and highly simplistic

(linearized.) This computational al:proach provides the vehicle monitoring system designer with the possible ranges

of expected values of the vibration monitoring metric, based on the random variation in the selected subset of design

parameters. Figure 11 shows the s_atistical distribution of the high-frequency vibration power values for both cases
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Figure 10: Total Power in the Hig _-Frequency range for an Ideal Cam vs. a Cam with profile tolerance and surface

roughness added.

Table 2: _tatistics of Total Power Changes due to MC simulation.

Freq Range

Total

Low-Freq

High-Freq

Ideal Profile Error Profile

Mean St Dev Skew Kurt [ Mean St Dev Skew Kurt

I

:31670.00 82.51 -0.23 3.35 [ 249930,00 3468.4 -0.25 3.15

153880,00 0,54 -0.06 3.07 [ 164120.00 143.27 -0.21 3.03,_2967,00 83.98 -0.22 3,35 69250.00 3468.5 -0.25 3.18

(total number bins is 20.) As obserx ed, the vibration metrics for both cases follow a normal distribution. However, the

spread in the vibration metric com F uled from the case of cam profile with errors is much larger in value than the ideal

cam profile case.

4.3 Discussion

Several observations can be made based on these analysis results. First, in addition to the mean levels of the vibration

metric being larger, the variance in _he value of the vibration metric due to the variation of the spring constant is larger

(approximately a factor of 40) in th:_ case of the cam with surface errors. This implies a greater impact of component

variations on the vibration response of the (more realistic) cam with profile and surface errors. As a result, the models

used for vehicle health monitoring _ystems not only have to take the variation in the design parameters into account,

but also model the profile and surface errors more accurately, which is nonexistent from current models.

Second, the effect of the rand_ m variation in the spring constant (K) variable on the vibration metric is quite
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3O

Histogram of total power in high freq range, idea_ :am profile case, N=20 birt_

Hislograrn of lOCal powe_ in high frequency range, cam wflh profile errors c.sse, N=,20 bins

Figure 11: Histogram of the Probability Distribution of the Total Power in the High-Frequency range for an Ideal

Cam vs. a Cam with profile tolerance and surface roughness added.

significant, as observed by the high variance value. The mathematical relationship describing the vibration metric

selected in this study would have to be modified to add the expected variation which has propagated through the

complex dynamic system, and resalted in the computed variation. In addition, the values of the metric within the

computed variation range will have to be stored to assure the elimination of false alarms: in other words, training

of the data must include the variation that has propagated through the system, so that anomalies are not identified

incorrectly.

Let us revisit the situation desctibed in Figure 1, where the four experimental factors (mast lift, mast bend, torque,

and assembly) resulted in significant differences in vibration levels. The question those empirical observations brought

up was whether any of these vibralion levels were "acceptable". A probabilistic approach as described in this paper

will enable the designer to set the limits of the vibration levels according to the mathematical model of the OH58

test rig vibrations, which will then identify which of the test conditions fall within the acceptable limits of variation.

A similar approach can be followe,t for the situation described in Figure 2, where the vibration metric would be the

power level at each of the frequencies, and angular variations in the placement of the planet gears can be propagated

through the system to determine ful ther effects.
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5 Closure

This paper addresses the problem (.f incorrect modeling assumptions made when designing vehicle health monitoring

systems, resulting in high rates of :'alse alarms and missed detections. The specific problem that was addressed is the

necessity of including the effect o _ statistical variations introduced during the design and manufacturing of rotating

machinery components that make up most aerospace systems. The propagation of such significant variations through

the system and their effect on the fnal monitoring metric of interest is typically unknown. In this paper, probabilistic

methods (e.g., Monte Carlo simul_Ltion) are used to describe the nature of the variations in the system response due

to variations in a subset of design _arameters. The results show significant variation that must be taken into account

using probabilistic models.

The paper presents an initial feasibility of enhancing deterministic dynamic models of complex systems by com-

bining them with probabilistic models. 0nly a subset of design parameters (those describing the spring constant K)

were considered in this paper. For a more thorough analysis, a full MC simulation is needed on all the parameters,

followed by a sensitivity analysis, turthermore, careful statistical tests need to be performed to determine the nature of

the parameter distributions resulting from the MC simulation. Finally, the paper uses a simple cam-follower system.

Future work will attack the problem of high-risk aerospace systems with much more complex system models. As

demonstrated in this paper, the effe ct of surface and profile errors requires special attention in such complex system.

Ongoing work focuses on developing finite difference models of rotorcraft transmission systems and aircraft engine

gear systems. These models will 9e used to determine whether and how the design and manufacturing variations

propagate through the systems, and how they can be represented in the signal modeling assumptions for vehicle health

monitoring systems. Using this apgroach, variational models can be developed without reliance on systems that are

simply expressed parametrically.
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